Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

$\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$: a novel ternary reduced molybdenum sulfide containing $\mathbf{M o}_{6}$ and $\mathbf{M o}_{\boldsymbol{9}}$ clusters

S. Picard, D. Salloum, P. Gougeon* and M. Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Received 19 March 2004
Accepted 5 April 2004
Online 11 May 2004
The crystal structure of dicaesium pentadecamolybdenum nonadecasulfide, $\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, consists of a mixture of $\mathrm{Mo}_{6} \mathrm{~S}_{8} \mathrm{~S}_{6}$ and $\mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{~S}_{6}$ cluster units in a $1: 1$ ratio. Both units are interconnected via inter-unit $\mathrm{Mo}-\mathrm{S}$ bonds. The Cs^{+}cations occupy large voids between the different cluster units. The Cs and two inner S atoms lie on sites with 3 symmetry (Wyckoff site $12 c$) and the Mo and S atoms of the median plane of the $\mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{~S}_{6}$ cluster unit on sites with 2 symmetry (Wyckoff site $18 e)$.

Comment

In a previous paper, we presented the syntheses, crystal structures and physical properties of the series of compounds $\mathrm{Rb}_{2 n} \mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}(n=1,2,3$ and 4; Picard et al., 2000). The crystal structures consist of an equal mixture of $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ and $\mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}(n=1-4)$ cluster units interconnected via Mo S bonds. The Rb^{+}cations occupy large voids between the different cluster units. The interest of these Mo cluster compounds lies not only in their fascinating structural aspect, but also in their interesting physical properties. Indeed, the $\mathrm{Rb}_{2 n} \mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}(n=1,2,3$, and 4$)$ compounds are superconducting, with critical temperatures ranging from 4.2 to 11 K .

In the Cs-Mo-S system, we reported a decade ago the crystal structure of $\mathrm{Cs}_{4} \mathrm{Mo}_{21} \mathrm{~S}_{25}$ (Gougeon \& Potel, 1993), which constitutes the second member of the series $\mathrm{Cs}_{2 n} \mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}$, and recently that of the third member, $\mathrm{Cs}_{6} \mathrm{Mo}_{27} \mathrm{~S}_{31}$ (Picard et al., 2003). We present here the crystal structure of $\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$.

The title compound (Fig. 1) is isomorphous with $\mathrm{In}_{2} \mathrm{Mo}_{15^{-}}$ Se_{19} (Potel et al., 1981) and constitutes the first member of the $\mathrm{Cs}_{2 n} \mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}$ series. Its crystal structure contains $\mathrm{Mo}_{6} \mathrm{~S}_{8}^{i} \mathrm{~S}_{6}^{a}$ and $\mathrm{Mo}_{9} \mathrm{~S}_{11}^{i} \mathrm{~S}_{6}^{a}$ cluster units in equal proportion. The i-type ligands cap Mo triangular faces and the a-type ones are in apical positions for the external Mo atoms (Fig. 2).

The $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ and $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ cluster units are centred at $6 a$ ($D 3$ or 32 symmetry) and $6 b$ positions (S_{6} or $\overline{3}$ symmetry), respectively. The Mo-Mo distances within the Mo_{6} clusters are
2.6854 (4) A for the intra-triangle distances (distances within the Mo_{3} triangles formed by the Mo atoms related through the threefold axis) and $2.7629(3) \AA$ for the inter-triangle distances. The Mo-Mo distances within the Mo_{9} clusters are 2.6823 (3) and 2.6893 (5) \AA for the intra-triangle distances between the Mo1 and Mo2 atoms, respectively, and 2.7271 (2) and 2.7826 (2) \AA for those between the Mo_{3} triangles.

The S atoms bridge either one (atoms S1, S3, S4 and S5) or two (atom S2) Mo triangular faces of the clusters. Moreover, atoms S1 and S3 are linked to an Mo atom of a neighbouring cluster. The $\mathrm{Mo}-\mathrm{S}$ bond distances range from 2.4170 (8) to 2.4725 (6) \AA within the $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ unit and from 2.3977 (6) to 2.6240 (5) \AA within the $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ unit. Compared with

Figure 1
A view of $\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$ along [110].

Figure 2

A plot showing the atom-numbering scheme and the inter-unit linkage of the $\mathrm{Mo}_{9} \mathrm{~S}_{11} \mathrm{~S}_{6}$ and $\mathrm{Mo}_{6} \mathrm{~S}_{8} \mathrm{~S}_{6}$ cluster units in $\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$. Displacement ellipsoids are drawn at the 97% probability level. Symmetry codes are as in Table 1.

Figure 3
The environment of the Cs^{+}ion. [Symmetry codes: (ii) $x-y-1$, $-2-y, \frac{1}{2}-z$; (iv) $-\frac{1}{3}-x,-\frac{2}{3}-y, \frac{1}{3}-z$.]
$\mathrm{Rb}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, the Mo-Mo and Mo-S distances in both units are quite similar to those observed in the Rb analogue, since the greatest differences are 0.006 and $0.01 \AA$ for the Mo-Mo and Mo-S bonds, respectively. This clearly shows that the number of electrons per Mo_{6} and Mo_{9} cluster should be almost the same in both compounds.

Each $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ unit is interconnected to six $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ units (and vice versa) via $\mathrm{Mo} 1-\mathrm{S} 3$ bonds (or $\mathrm{Mo} 3-\mathrm{S} 1$ bonds) to form the three-dimensional Mo-S framework, the connective formula of which is $\mathrm{Mo}_{9} \mathrm{~S}_{5}^{i} \mathrm{~S}_{6 / 2}^{i-a} \mathrm{~S}_{6 / 2}^{a-i}, \mathrm{Mo}_{6} \mathrm{~S}_{2}^{i} \mathrm{~S}_{6 / 2}^{i-a} \mathrm{~S}_{6 / 2}^{a-i}$. The result of this arrangement is that the shortest intercluster Mo1-Mo3 distance between the Mo_{6} and Mo_{9} clusters is 3.2934 (3) \AA, indicating only a weak metal-metal interaction. This value is slightly larger than the value of $3.246(2) \AA$ observed for $\mathrm{Rb}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, as expected from the larger size of the Cs^{+} cations.

The alkali-metal cations are in a pentacapped trigonal prismatic environment of S atoms (Fig. 3). The Cs-S distances span a wide range, viz. 3.2825 (6)-3.7497 (6) A.
$\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$ was found to be superconducting at $2.7 \mathrm{~K}(4.2 \mathrm{~K}$ for $\mathrm{Rb}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$) from ac (alternating current) susceptibility measurements on a batch of single crystals.

Experimental

Single crystals of $\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$ were prepared from a stoichiometric mixture of $\mathrm{Cs}_{2} \mathrm{MoS}_{4}, \mathrm{MoS}_{2}$ and Mo. All handling of materials was

Table 1

Selected interatomic distances (\AA).

$\mathrm{Cs}-\mathrm{S} 1^{\text {i }}$	3.2825 (6)	$\mathrm{Mo} 1-\mathrm{Mo} 2^{\text {ix }}$	2.7826 (2)
Cs-S5	3.4080 (11)	$\mathrm{Mo} 2-\mathrm{S} 1^{\text {vii }}$	2.3977 (6)
$\mathrm{Cs}-\mathrm{S4}^{\text {iv }}$	3.5640 (11)	Mo2-S2 ${ }^{\text {v }}$	2.4721 (7)
Cs-S2	3.7465 (5)	$\mathrm{Mo} 2-\mathrm{Mo}^{\text {viii }}$	2.6893 (5)
Cs-S3	3.7497 (6)	Mo3-S5	2.4170 (8)
Mo1-S4	2.4189 (8)	Mo3-S1	2.4429 (6)
Mo1-S ${ }^{\text {iii }}$	2.4328 (6)	Mo3-S3 ${ }^{\text {xii }}$	2.4481 (6)
Mo1-S1 ${ }^{\text {vii }}$	2.4554 (7)	Mo3-S3 ${ }^{\text {xiii }}$	2.4703 (6)
Mo1-S3	2.5130 (6)	Mo3-S3 ${ }^{\text {xiv }}$	2.4725 (6)
Mo1-S2 ${ }^{\text {v }}$	2.6240 (5)	Mo3-Mo3v	2.6854 (4)
Mo1-Mo1 ${ }^{\text {viii }}$	2.6823 (3)	Mo3-Mo3 ${ }^{\text {xv }}$	2.7629 (3)
Mo1-Mo2	2.7271 (2)		

[^0]performed in an argon-filled glove-box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to 1773 K , held at that temperature for 48 h , cooled at $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1373 K and finally furnace cooled.

Crystal data
$\mathrm{Cs}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$
$M_{r}=2314.06$
Trigonal, $R \overline{3}_{c}$
$a=9.50120$ (10) \AA
$c=56.4199(6) \AA$
$V=4410.82(8) \AA^{3}$
$Z=6$
$D_{x}=5.227 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 22219
\quad reflections
$\theta=2.9-40.3^{\circ}$
$\mu=9.94 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Irregular block, black
$0.34 \times 0.25 \times 0.21 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.098, T_{\text {max }}=0.203$
33032 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0187 P)^{2}\right. \\
& +51.7289 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\text {max }}=2.99 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-1.98 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.000784 \text { (16) }
\end{aligned}
$$

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EvalCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999) program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the Centre de diffractométrie de l'Université de Rennes I (http://www.cdifx.univ-rennes1.fr).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1041). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, G., Guagliard, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.,
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straße 1, Bonn, Germany.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gougeon, P. \& Potel, M. (1993). Acta Cryst. C49, 427-430.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Picard, S., Saillard, J.-Y., Gougeon, P., Noel, H. \& Potel, M. (2000). J. Solid State Chem. 155, 417-426.
Picard, S., Salloum, D., Gougeon, P. \& Potel, M. (2003). Acta Cryst. C59, i112$i 114$.
Potel, M., Chevrel, R. \& Sergent, M. (1981). Acta Cryst. B37, 1007-1010.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: Symmetry codes: (i) $1+y, x, \frac{1}{2}-z$; (iii) $-1-x,-x+y, \frac{1}{2}-z$; (iv) $-\frac{1}{3}-x,-\frac{2}{3}-y, \frac{1}{3}-z$; (v) $-1-y, x-y-1, z$; (vii) $x-y,-1-y, \frac{1}{2}-z$; (viii) $-y, x-y, z$; (ix) $-x+y,-x, z$; (xii) $x-\frac{2}{3}, x-y-\frac{4}{3}, \frac{1}{6}+z$; (xiii) $y, x-1, \frac{1}{2}-z$; (xiv) $x-y-1,-1-y, \frac{1}{2}-z$; (xv) $\frac{1}{3}+y,-\frac{1}{3}-x+y, \frac{2}{3}-z$.

